Расчет мощности стальных регистров отопления

Какие бывают регистры отопления – выбор, расчет, характеристики

Отопительные регистры – специальные приспособления, которые используются для увеличения эффективности теплообмена между средой в помещении и теплоносителем. Они устанавливаются в отопительных системах промышленных, производственных и складских помещений, а также жилых и офисных зданиях. Что это за приспособления, и каковы их преимущества, расскажем в материале ниже.

Разновидности отопительных регистров

По строению регистры отопления представляют собой стальные трубы, совмещенные с системой отопления патрубками меньшего диаметра. Различают 2 основных типа регистров отопления.

Секционные

Секционные стальные регистры отопления из гладких труб могут состоять как из одной, так и из нескольких отрезков, концы которых закрыты заглушками. Входящая труба с теплоносителем врезается в верхнюю часть секции. Перемещаясь из стороны в сторону, вода постепенно заполняет всю секцию.

Для изготовления данного вида теплообменника используются гладкие стальные трубы сечением 25-400 мм. Чаще всего применяют трубы 76, 89, 108 и 159 мм в диаметре. Врезку входных и выходных патрубков можно выполнять на резьбе, фланцевым соединением или сваркой.

Дополнительно оборудование оснащено штуцером с резьбой, в который подключается воздухоотводчик. Такие стальные регистры рассчитаны на максимальное давление теплоносителя в пределах 10 кгс/см 2 или 1 МПа.

Установленные по бокам трубы заглушки бывают плоские или в форме эллипса. Переходы между трубами стараются делать максимально близко к краям, чтобы увеличить теплоотдачу оборудования.

Читайте также:  Кожух для конвектора универсал тб с тзпо

Змеевиковые

В отличие от секционного, змеевиковый теплообменник представляет собой одну длинную трубу, изогнутую в форме буквы S. В нем используются трубы аналогичного сечения, причем участков их сужения не наблюдается.

Благодаря особой форме конструкции увеличивается теплоотдача регистров отопления данного типа и снижается гидравлическое сопротивление теплоносителя.

В большинстве случаев регистры отопления изготавливаются из труб с гладкими стенками из высокоуглеродистой стали. Однако можно встретить и приборы из нержавеющей или низколегированной стали, а также чугунные.

Благодаря использованию регистров отопления, даже если они имеют компактный размер, можно добиться высокой эффективности обогрева. В связи с этим данные приборы активно применяются в промышленных и складских помещениях больших размеров.

Стоит отметить, что применение регистров особенно актуально в помещениях, к которым предъявляются повышенные требования санитарной и пожарной безопасности.

Расчет регистров отопления — как рассчитать правильно

Принимая решение об установке данного вида теплообменников в своей квартире, стоит определиться, как рассчитать регистры отопления.

Для этих целей используют следующую формулу:

π = 3,14 – постоянная величина;

dн – внешнее сечение трубы, м;

L – длина отрезка, м;

tо – температура воздуха в здании, в котором будет монтироваться регистр;

tr – температура воды, циркулирующей в трубопроводе;

k – коэффициент теплопередачи, значение которого равно 11,63 Вт/м 2 ℃;

ηиз – коэффициент теплопередачи изоляции. Если прибор изолирован, значение ηиз=0,6-0,8. В приборах без изоляции такой коэффициент равен нулю.

Произведем расчет регистров отопления для трубы сечением 159 мм и длиной 5 м. Температура воды в контуре составляет 80 ℃, а температура воздуха в комнате – 23 ℃.

Результат расчета регистров из гладких труб для отопления показал мощность теплообменника, в котором использована одна горизонтальная труба. Если он состоит из нескольких рядов, для каждого последующего уровня применяется понижающий коэффициент 0,9.

Чтобы не вникать в подробности, как рассчитать количество регистров отопления, можно воспользоваться онлайн калькуляторами, однако их результаты довольно часто остаются далекими от истины. В связи с этим желательно все-таки разобраться с формулой и выполнить расчет регистров отопления из труб, чтобы проверить, насколько правильный результат выдает калькулятор.

Во время установки отопительных регистров следует придерживаться требований ГОСТа. Поскольку соединение должно быть прочным и надежным, чтобы выдержать массу прибора находящимся внутри теплоносителем, потребуется сварочный аппарат.

Характеристики устройств

Отопительные регистры имеют несколько качеств, отличающих их от иных отопительных приборов:

  • Благодаря эффективному теплообмену с окружающим пространством небольшие по размеру приборы способны отапливать крупногабаритные помещения.
  • Изготовление теплообменника достаточно простое – необходим лишь сварочный аппарат и угловая шлифмашина с отрезным диском.
  • Можно использовать любые доступные материалы – трубы из чугуна, нержавейки или стали.
  • Приборы способны выдерживать высокое давление (10 кгс/м 2 ) и могут работать на любых теплоносителях – воде, масле, других жидкостях, пару.
  • Собрать прибор можно как уже по готовым чертежам, так и по самостоятельно составленным. Допускаются различные варианты конфигурации, заглушек, доборных элементов и отделочных материалов.
  • Конечная стоимость теплообменника из гладких труб получится ниже, чем у прочих приборов с аналогичным уровнем эффективности.

Стоит отметить, что чем больше совокупная площадь поверхности прибора, тем выше его теплоотдача. В свою очередь, площадь зависит от сечения трубы и длины секции.

Обратите внимание, что эффективность оборудования будет зависеть от количества уровней и отступа между ними, конфигурации прибора (S-образной или секционной), типа используемого материала, а также наличия изоляции и свойств теплоносителя.

В большинстве случаев регистры отопления обладают такими характеристиками:

  1. Для теплообменника использованы электросварные трубы из углеродистой стали.
  2. Соединение труб выполнено одним из способов – фланцевое, на внешней резьбе, и сварное.
  3. Максимальное значение давления – 10 кгс/м 2 .
  4. Сечение труб в секциях – 32-219 мм.
  5. Минимальный отступ между уровнями – от 50 мм.
  6. Сечение соединительных перемычек – от 32мм.

Отопительные регистры с нагревательным элементом

В тех случаях, когда в помещении невозможно проложить отопительные трубы, устанавливают особый вид регистров – с ТЭНом. Его мощность колеблется в пределах 1,6-6 кВт, а требуемое рабочее напряжение 220 В при частоте переменного тока 50 Гц.

Иногда в комплект с прибором входит циркуляционный насос, который обеспечивает эффективную теплоотдачу отопительного регистра благодаря усиленной циркуляции теплоносителя.

Если оборудование работает автономно, его заполняют антифризом. В таком режиме ТЭН способен поддерживать температуру поверхности в пределах 80 ℃.

В тех случаях, когда приборы встроены в общую отопительную систему, ТЭН включается в момент падения температуры теплоносителя, или же отключается, если необходимости в нем нет.

Достоинства оборудования

Основными достоинствами данной разновидности теплообменника можно считать:

  • удобство в эксплуатации;
  • легкость обслуживания (чистки);
  • наличие большой теплоотдающей площади при малых габаритах;
  • высокая пожаробезопасность;
  • экономный расход электроэнергии при наличии ТЭНа;
  • возможность использования в качестве полотенцесушителя;
  • широкая область применения – можно устанавливать на складах, в производственных цехах, торговых павильонах и офисных зданиях, а также в больницах и поликлиниках.

Выводы

Если вы решили оборудовать свой дом данным типом отопительных приборов, советуем тщательно разобраться в особенностях его работы, а также изучить тонкости создания и установки регистров. Дополнительная справочная литература очень вам в этом поможет.

Регистры отопления из труб

Всем известно, что теплообмен (теплоотдача) – передача тепловой энергии – между телами и средами возникает при наличии разницы температур. Среда или тело имеющая более высокую температуру, остывая, нагревает более холодную среду и повышает ее температуру.

В системах водяного отопления горячая вода (теплоноситель), поступая в прибор отопления, нагревает его стенки (оболочку). Стенки через свои наружные поверхности отдают тепло воздуху в основном двумя способами: конвекцией и излучением.

Конвекция – это передача тепла потокам воздуха, протекающим вдоль горячих стенок прибора отопления.

Тепловое излучение – это передача тепловой энергии за счет излучения электромагнитных волн горячими стенками прибора отопления в окружающее пространство.

Наглядным примером действия теплового излучения является костер. Если в прохладный вечер стать боком к тлеющим углям костра на расстоянии трех – четырех метров, то часть лица, обращенная к костру, быстро нагреется, а противоположная часть лица будет оставаться холодной. При этом температура воздуха с обеих сторон будет примерно одинаковой.

Все приборы – чугунные батареи, регистры отопления из труб, стальные и алюминиевые панели, конвекторы и инфракрасные излучатели – отличаются друг от друга (кроме габаритов, внешнего вида, коэффициентов теплоотдачи) преобладающим видом передачи тепла окружающему воздуху и предметам. При этом, как правило, и конвекция и излучение существуют одновременно и действуют параллельно.

В этой статье будет рассмотрен пример расчета теплоотдачи регистров отопления из труб. Изготавливать регистры отопления из гладких труб экономически не было выгодно никогда — ни сегодня, ни вчера. Если 30-50 лет назад их широко применяли из-за дефицита качественных дешевых и эффективных приборов отопления, то применение регистров сегодня – это скорее инерционная привычка теплотехников. Стоимость системы отопления с применением, например, конвекторов на 20-30% ниже стоимости системы, где применены регистры отопления из труб. Теплоотдача приборов должна быть максимальной при минимальной стоимости и, соответственно, минимальной материалоемкости и трудоемкости изготовления. Однако часто это — взаимоисключающие критерии.

Тем не менее, вопрос теплоотдачи стальных труб остается актуальным, если ими выполняется разводка, а также при выполнении сравнительных расчетов различных вариантов систем и при ремонтах действующих систем, в которых применены регистры отопления из гладких труб.

Опираясь на теорию и практические опыты по теплоотдаче, а так же на основе многочисленных табличных данных с помощью Excel мне удалось найти достаточно точные формульные зависимости теплофизических характеристик воздуха (температуропроводности, теплопроводности, кинематической вязкости, критерия Прандтля) от температуры. Ниже представлена программа расчета теплоотдачи регистров отопления из горизонтальных металлических труб при свободном движении воздуха, являющаяся итогом проделанной работы.

Программа расчетов написана в MS Excel, но можно использовать и программу OOo Calc из пакета Open Office.

Правила форматирования ячеек листа Excel, которые применены в статьях этого блога, представлены на странице « О блоге ».

Теплоотдача регистров отопления из гладких труб. Расчет в Excel.

Регистр отопления из четырех гладких труб и схема движения теплоносителя показаны на рисунке, представленном ниже.

Включаем компьютер, MS Office и начинаем расчет в Excel.

Исходные данные:

Исходных данных не много, они понятны и просты.

1. Диаметр труб D в мм заносим

в ячейку D3: 108,0

2. Длину регистра (одной трубы) L в м записываем

в ячейку D4: 1,250

3. Количество труб в регистре N в штуках пишем

4. Температуру воды на «подаче» tп в °C заносим

5. Температуру воды на «обратке» tо в °C пишем

6. Температуру воздуха в помещении tв в °C вводим

7. Вид наружной поверхности труб выбираем из выпадающего списка

в объединенных ячейках C9D9E9: «При теоретическом расчете»

8. Постоянную Стефана-Больцмана C0 в Вт/(м 2 *К 4 ) заносим

в ячейку D10: 0,00000005669

9. Значение ускорения свободного падения g в м/с 2 вписываем

в ячейку D11: 9,80665

Меняя исходные данные можно смоделировать любую «температурную ситуацию» для любого типоразмера регистра отопления!

Теплоотдача просто одиночной горизонтальной трубы также может легко быть посчитанной по этой программе! Для этого достаточно указать количество труб в регистре отопления равное единице ( N =1).

Результаты расчетов:

10. Степень черноты излучающих поверхностей труб ε автоматически определяется по выбранному виду наружной поверхности

в ячейке D13: =ИНДЕКС(H5:H31;G2) =0,810

В базе данных, расположенной на одном листе с программой расчета, для выбора представлены 27 видов наружных поверхностей труб и их степени черноты. (Смотри в файле для скачивания в конце статьи.)

11. Среднюю температуру стенок труб tст в °C вычисляем

в ячейке D14: =(D6+D7)/2 =72,5

12. Температурный напор dt в °C рассчитываем

в ячейке D15: =D14-D8 =54,5

13. Коэффициент объемного расширения воздуха β в 1/K определяем

в ячейке D16: =1/(D8+273) =0,003436

14. Кинематическую вязкость воздуха ν в м 2 /с вычисляем

в ячейке D17: =0,0000000001192*D8^2+0,000000086895*D8+0,000013306 =0,00001491

15. Критерий Прандтля Pr определяем

в ячейке D18: =0,00000073*D8^2-0,00028085*D8+0,70934 =0,7045

16 . Коэффициент теплопроводности воздуха λ рассчитываем

в ячейке D19: =-0,000000022042*D8^2+0,0000793717*D8+0,0243834 =0,02580

17. Площадь теплоотдающих поверхностей труб регистра A в м 2 определяем

в ячейке D20: =ПИ()*D3/1000*D4*D5 =1,6965

18. Тепловой поток излучения с поверхностей труб регистра отопления Qи в Вт вычисляем

в ячейке D21: =D10*D13*D20*((D14+273)^4- (D8+273)^4)*0,93^(D5-1) =444

19. Коэффициент теплоотдачи при излучении αи в Вт/(м 2 *К) рассчитываем

в ячейке D22: =D21/(D15*D20) =4,8

20. Критерий Грасгофа Gr вычисляем

в ячейке D23: =D11*D16*(D3/1000)^3*D15/D17^2 =10410000

21. Критерий Нуссельта Nu находим

в ячейке D24: =0,5*(D23*D18)^0,25 =26,0194

22. Конвективную составляющую теплового потока Qк в Вт вычисляем

в ячейке D25: =D26*D20*D15 =462

23. А коэффициент теплоотдачи при конвекции αк в Вт/(м 2 *К) определяем соответственно

в ячейке D26: =D24*D19/(D3/1000)*0,93^(D5-1) =5,0

24. Полную мощность теплового потока регистра отопления Q в Вт и Ккал/час считаем соответственно

в ячейке D27: =D21+D25 =906

и в ячейке D28: =D27*0,85985 =779

25. Коэффициент теплоотдачи от поверхностей регистра отопления воздуху α в Вт/(м2*К) и Ккал/(час*м2*К) находим соответственно

в ячейке D29: =D22+D26 =9,8

и в ячейке D30: =D29*0,85985 =8,4

На этом расчет в Excel завершен. Теплоотдача регистра отопления из труб найдена!

Расчеты многократно подтверждены практикой!

Теплотехническим расчетам на этом сайте посвящен еще ряд статей. Быстро перейти к ним можно по ссылкам, расположенным ниже статьи или через страницу «Все статьи блога». В этих статьях просто и понятно на примерах рассказывается об основных понятиях теплотехники.

Замечания.

1. Правильнее в расчетах было бы использовать не коэффициент теплоотдачи α между наружными стенками регистра и воздухом, а коэффициент теплопередачи k , учитывающий теплообмен между теплоносителем (водой) и внутренними стенками труб регистра отопления, а так же передачу тепла через материал стенки (термическое сопротивление стенки). Рассчитывается коэффициент теплопередачи от воды к воздуху помещения по формуле:

α1 ≈2000…3000 Вт/(м 2 *К) – коэффициент теплоотдачи между водой и внутренней стальной стенкой

λст ≈50…60 Вт/(м*К) – коэффициент теплопроводности материала стенок труб

2. Теплоотдача регистров отопления зависит от способа подачи воды в них (сверху вниз, снизу вверх …), от монтажных расстояний до ограждающих конструкций (до пола, до подоконника, до стены, до экрана), от толщины лакокрасочного покрытия и прочих факторов. Фактическая теплоотдача может быть меньше расчетной на 15…20%. Это необходимо учитывать при окончательных расчетах!

3. Расстояние между трубами и количество труб также оказывают влияние на теплоотдачу регистров отопления. В программе это частично учтено применением понижающего коэффициента (0,93) на каждый дополнительный ряд труб. Расстояние между трубами желательно выдерживать не менее диаметра трубы D (больше — лучше) .

4. Коэффициент теплопередачи k не является постоянной величиной для конкретного прибора отопления и значительно меняется при изменении температурного напора dt ! Подробнее об этом (и не только) читайте в ближайших статьях блога.

Подписывайтесь на анонсы статей в окнах, расположенных в конце каждой статьи или вверху каждой страницы и не забывайте подтверждать подписку кликом по ссылке в письме, которое тут же придет к вам на указанную почту (может прийти в папку «Спам»).

Уважаемые читатели, оставляйте комментарии к статье! Ваши мысли, замечания, предложения, вопросы, советы всегда интересны и полезны коллегам и автору.

Оцените статью