- Стоит ли применять тепловой насос для обогрева дома
- Преимущества использования теплового насоса
- Расчёт для систем отопления, таблица
- Эффективность теплового насоса
- Отличительные черты
- Преимущества
- Недостатки
- Конструктивное исполнение
- Грунтовые конструкции
- Установка зондов в скважинах
- Горизонтальные коллекторы
- Водные коллекторы
- Воздушный метод
- Тепловой насос для отопления, популярная продукция
- Как сделать насос своими руками
- Тепловой насос – грунт, вода
- Принцип работы тепловых насосов
- Что такое тепловой насос для отопления частного дома? Как работает?
- Монтаж своими руками
- Энергоносители за или против?
- Устройство и принцип работы
- Безопасность и экологичность
- Воздушные — сплит и моно
- Преимущества и недостатки системы
- Разновидности тепловых насосов
- Грунт – вода
- Вода – вода
- Воздух – вода
- Вода – воздух
- Воздух – воздух
- Принцип работы
- Принцип работы теплового насоса
Стоит ли применять тепловой насос для обогрева дома
Преимущества использования теплового насоса
- Экономичность. Благодаря высокому КПД системы достигается низкое энергопотребление. Из 1 кВт затраченной электроэнергии получается от 3 до 7 кВт тепловой энергии. Это больше, чем при работе любых котлов, использующих топливо.
- Автономность. Работа насоса не нуждается в подаче органического топлива, поэтому нет необходимости прокладывать тепловые коммуникации.
- Универсальность. В одном устройстве сочетаются одновременно системы нагрева воды, отопления и охлаждения.
- Безопасность. В отличие от котлов, которые могут воспламениться или взорваться, тепловой насос является абсолютно безопасным. Он не содержит деталей, температура которых может привести к пожару. Не выделяет угарный ядовитый газ. Остановка работы не приведет к поломке или замораживанию жидкости.
- Надежность. Работой насоса управляет автоматика. Обслуживание не требует специального обучения.
- Долговечность. Прибор может прослужить от 20 до 50 лет. Это на порядок больше, чем у стандартных систем отопления.
- Комфорт. Функционирование насоса не сопровождается колебанием температуры и влажности. Работает практически бесшумно.
- Минимум площади требуется под скважину. Так как зонд находится под землей, повредить его невозможно.
- Экологичность. Окружающая среда не загрязняется вредными выбросами.
- Отсутствие бумажной волокиты. При монтаже не нужны согласования, как, например, при установке газового отопления.
Расчёт для систем отопления, таблица
Главным показателем, который показывает мощность того или иного теплового прибора, является параметр КПТ (в англоязычной литературе он известен под аббревиатурой COP). КПТ — коэффициент преобразования тепла, который вычисляется путём деления общей мощности устройства на количество потребляемого электричества за единицу времени. Например, некий насос X потребляет 2 кВт/ч электрической энергии, а вырабатывает при этом 5 кВт/ч тепловой энергии — в таком случае значение КПТ = 5/2 = 2,5.
Коэффициент преобразования большинства устройств находится в пределах от 3 до 7, однако чем выше КПТ, тем дороже будет стоить прибор. Следует также помнить, что значение КПТ зависит от температуры окружающей среды — если она слишком низкая, то значение КПТ начнёт стремиться к 1 (фактически для нагрева теплоносителя используется только электричество, а внешнее тепло принимать участие в обогреве здания не будет).
Фото 4. Таблица с расчетом мощности теплового насоса типа воздух-вода от производителя Sapun.
Применение того или иного насоса должно быть оправдано с инженерной точки зрения. Для покупки прибора сперва производят расчёт теплопотерь здания. Для этого используется следующая формула: КТ = (ОЗ * МТП * КС)/860. Расшифровывается она так:
- Количество тепла (единицы измерения — кВт/ч).
- ОЗ — общий объем здания.
- МТП — максимальный температурный перепад. Для определения этого показателя следует отнять температуру в помещении от уличной температуры. Например, вы хотите, чтобы в помещении температура зимой составляла 20 °C, тогда как на улице она будет находиться рядом с отметкой —10 °C — в таком случае МТП = 20 — (-10) = 30.
- КС — специальный поправочный коэффициент, который учитывает тип стен. Для деревянных — показатель КС равен 3—4 единицам, для кирпичных стен — 2—3, для кирпичных в два слоя — 1—2, для кирпичных в 2 слоя с утеплителем — 0,5—1.
- Число 860 — поправочный коэффициент, на который делится итоговое значение, чтобы перевести килокалории в киловатт-часы.
Внимание! Эта формула — приблизительная, поскольку температурный режим здания сильно зависит от его конструктивных особенностей. Поэтому при покупке инженеры рекомендуют покупать отопительный насос «с запасом»
Эффективность теплового насоса
Для оценки эффективности теплового насоса служит коэффициент преобразования m, равный отношению передаваемой насосом энергии, к энергии, используемой компрессором для работы всего устройства.
В современных системах тепловых насосов этот коэффициент равен 3 и более. Не вдаваясь в тонкости термодинамических процессов, отмечу, что существует взаимозависимость коэффициента преобразования от разности температуры во входном и выходном контурах теплового насоса. Чем больше перепад этих температур, тем ниже экономность расходуемой компрессором электроэнергии. Также и наоборот.
Кстати, именно поэтому выгоднее обогревать дом теплыми полами с температурой +25-+35оС, нежели обычными бытовыми радиаторами, разогретыми до +70-+90оС. В таких случаях коэффициент m достигает значений 4,5 и более.
Отличительные черты
Преимущества
Отопление дома тепловым насосом в сравнении с другими системами обладает:
- хорошими параметрами экологичности;
- большим сроком службы оборудования без технического обслуживания;
- возможностью простого переключения режима обогрева зимой на кондиционирование летом;
- высокой годовой эффективностью.
Недостатки
На стадии проекта и при эксплуатации приходится учитывать:
- сложность выполнения точных технических расчетов;
- высокую стоимость оборудования и монтажных работ;
- возможности образования «воздушных пробок» при нарушениях технологии укладки трубопроводов;
- ограниченную температуру воды на выходе из системы (≤+65ºС);
- строгую индивидуальность каждой конструкции для любого здания;
- потребность больших площадей для коллекторов с исключением строительства объектов на них.
Конструктивное исполнение
Промышленность выпускает различные по эксплуатационным характеристикам модели, но они имеют в своем составе оборудование, выполняющее типовые задачи, описанные выше.
Как вариант конструктивного исполнения на рисунке представлен тепловой насос для отопления дома.
Здесь по входным трубопроводам принимается тепло от геотермальных источников, а по выходным — передается в систему обогрева дома.
Работа теплового насоса обеспечивается:
- системой контроля параметров схемы и управления, включая дистанционные способы через интернет;
- дополнительным оборудованием (узлы промывки и заполнения, расширительные баки, группы безопасности, насосные станции).
Грунтовые конструкции
Они используют три схемы устройства теплообменников для забора энергии от источника:
- поверхностное расположение;
- установка вертикальных грунтовых зондов;
- заглубление горизонтальных конструкций.
Первый метод наименее эффективен. Поэтому он редко применяется для отопления дома.
Установка зондов в скважинах
Этот способ наиболее эффективен. Он предусматривает создание скважин на глубины порядка 50÷150 метров и больше для размещения U-образного трубопровода из пластиковых материалов с диаметром от 25 до 40 мм.
Увеличение площади поперечного сечения трубы, как и углубление скважины, создает улучшенный теплосъем, но удорожает конструкцию.
Горизонтальные коллекторы
Бурение скважин для зондов стоит дорого. Поэтому часто выбирается этот способ, как более дешевый. Он позволяет обойтись рытьем траншей ниже глубины промерзания почвы.
В проекте горизонтального коллектора следует учитывать:
- теплопроводность грунта;
- среднюю влажность почвы;
- геометрию участка.
Они влияют на габариты и конфигурацию коллектора. Трубы могут укладываться:
- петлями;
- зигзагами;
- змейкой;
- плоскими геометрическими фигурами;
- винтовыми спиралями.
Важно понимать, что площадь участка, отводимого под такой коллектор, обычно превышает габариты фундамента дома в 2÷3 раза. Это основной недостаток такого метода
Водные коллекторы
Это наиболее экономичный способ, но он требует расположения около здания глубокого водоема. На его дне размещают и закрепляют грузами собранные трубопроводы. Для эффективной работы теплового насоса требуется просчитать минимальную глубину закладки коллектора и объем водоема, способного обеспечить теплосъем.
Габариты такой конструкции определяются проведением тепловых расчетов и могут достигать протяженности более 300 метров.
Рисунок ниже демонстрирует подготовку магистралей для сборки на льду весеннего озера. Он позволяет визуально оценить масштабы предстоящей работы.
Воздушный метод
Внешний или встроенный вентилятор нагнетает воздух с улицы прямо на испаритель с фреоном, как в кондиционере. При этом не требуется создавать громоздкие конструкции из труб и помещать их в грунт или водоем.
Тепловой насос для отопления дома, работающий по такому принципу, стоит дешевле, но использовать его рекомендуется в относительно теплом климате: морозный воздух не позволит работать системе.
Подобные устройства нашли широкое применение для обогрева воды в бассейнах или помещений, расположенных рядом с промышленными устройствами, постоянно участвующими в технологическом процессе и выделяющими в атмосферу тепло мощными системами охлаждения. В качестве примера можно привести силовые автотрансформаторы энергетики, дизельные станции, котельные.
Тепловой насос для отопления, популярная продукция
Эти приборы от известного производителя являются самыми востребованными, если верить статистике продаж. Немецкий концерн выпускает разные модификации. Для небольшого дома – мощностью в пределах 18-30 кВт, для предприятий – более габаритные установки. Модели данной марки отличает надежная автоматика, позволяющая упростить эксплуатацию. Например, разморозка осуществляется без вмешательства пользователя. Еще одно преимущество – применение каскадных схем. Размещение нескольких насосов, работающих на общий отопительный контур, позволяет обогревать большие площади с регулировкой по мощности в значительном диапазоне.
Не менее авторитетная датская компания специализируется на выпуске исключительно для частных домов. Потому и максимальная мощность агрегатов – 36 кВт. Отличаются от моделей Stiebel Eltron большей температурой на «подачу» – до 90°C. Кроме того, они несколько экономичнее немецких аналогов. Еще плюс – некоторые из них управляются дистанционно, даже с гаджетов.
Насосы отечественного производства. Следовательно, адаптированы к нашим зимам. Эффективность не снижается и при температуре -60°C. Характеризуются низким эн/потреблением. Изделия для частных домов могут подключаться к сети 220/1ф. Более мощным моделям нужна трехфазная линия.
Еще одна российская разработка. Отличается большим выбором по мощности (кВт) – от 4,5 до 100. Учитывая неприхотливость агрегатов, один из лучших вариантов для жилого дома.
Так же ознакомьтесь с нашей статьёй про альтернативные источники энергии «Альтернативные источники энергии в наши дни»
Как сделать насос своими руками
ТН изготовить своими руками вполне реально, но для этого необходимо найти хороший компрессор. Его можно купить в магазине запасных частей или использовать от старого холодильника или кондиционера.
В качестве конденсатора используется бак из нержавейки — приблизительно на 100 литров. Для контура отлично подойдут тонкие медные сантехнические трубки.
- С помощью уголка закрепить компрессор к стене в месте, где будет размещаться ТН.
- Далее сделать змеевик из медных трубок: обмотать их вокруг подходящего цилиндра. Шаг намотки по змеевику должен быть одинаковым.
- Бак нужно разрезать на две половинки, внутрь вставить змеевик и заварить обратно. При этом в нем необходимо сделать несколько входных отверстий, через которые вывести трубки змеевика.
- В качестве испарителя можно использовать пластиковую бочку — в нее завести трубки внутреннего контура.
- Далее в схеме нужно создать избыточное давление для проверки герметичности.
Для транспортировки прогретой воды можно использовать обычные ПВХ-трубы (из поливинилхлорида). Заправку системы фреоном желательно сделать совместно со специалистом. Короб для батареи из гипсокартона читайте в нашей статье.
Тепловой насос – грунт, вода
На грунтовых тепловых насосах хочу остановиться отдельно. Их можно разбить на несколько, не схожих между собой, систем. Прежде всего это ТН с открытым циклом, где вода, имеющая плюсовую температуру, забирается прямо из водоносного горизонта и после охлаждения при отборе тепла отправляется обратно.
Широкое применение имеют системы с закрытым циклом, когда теплоноситель прокачивается через замкнутый трубопроводный контур, который уложен в грунте либо на дне открытого водоема. Контур для выбора тепла можно установить вертикально в скважине или уложить горизонтально в глубокой траншее.
При выборе между горизонтальном коллекторе или вертикальном зондом необходимо учесть, что во втором случае каждый погонный метр скважины насоса отдает 50 Вт тепловой энергии, а коллектор всего-то – 20. Помимо этого, коллектор за весь отопительный сезон выхолаживает грунт. А это приводит к падению эффективности теплового устройства. Зато бурение скважины под тепловой насос обходится на порядок дороже.
Укладка трубопровода контура теплового насоса в траншею
Принцип работы тепловых насосов
Давайте посмотрим, как работает тепловой насос и как он устроен. Он состоит из трех основных частей:
Использование грунтового зонда зачастую является самым простым и эффективным решением. Он многофункционален, долговечен и не требует сложного технического обслуживания.
Все эти узлы объединяются между собой трубками, по которым циркулирует хладагент – он закипает и испаряется при отрицательных температурах, отбирая крупицы энергии у окружающего пространства. Именно этот процесс и протекает в испарителе.
После своего испарения хладагент попадает в конденсатор, где происходит обратный процесс – тепловая энергия передается на дальнейшие нужды, а хладагент остывает и конденсируется. Тем самым тепло переносится из окружающего пространства и выделяется в конденсаторе. Все процессы протекают под большим давлением, создаваемым компрессором.
Что такое тепловой насос для отопления частного дома? Как работает?
Специальное устройство, которое способно извлекать тепло из окружающей среды называется тепловой насос.
Применяются такие приборы в качестве основного или дополнительного метода обогрева помещений. Некоторые устройства также работают на пассивное охлаждение здания — при этом насос применяется как для летнего охлаждения, так и для зимнего обогрева.
В качестве топлива используется энергия окружающей среды. Такой обогреватель извлекает тепло из воздуха, воды, грунтовых вод и так далее, поэтому это устройство относят к классу возобновляемых источников энергии.
Важно! Для работы таких насосов требуется подключение к электросети. В состав всех тепловых аппаратов входит испаритель, компрессор, конденсатор и расширительный клапан
В зависимости от источника тепла различают водяные, воздушные и другие устройства. Принцип действия очень похож на принцип работы холодильника (только холодильник выбрасывает горячий воздух, а насос поглощает тепло)
В состав всех тепловых аппаратов входит испаритель, компрессор, конденсатор и расширительный клапан. В зависимости от источника тепла различают водяные, воздушные и другие устройства. Принцип действия очень похож на принцип работы холодильника (только холодильник выбрасывает горячий воздух, а насос поглощает тепло).
Большинство приспособлений работают как при положительных, так и при отрицательных температурах, однако КПД устройства напрямую зависит от внешних условий (т. е. чем выше температура окружающей среды, тем мощнее будет устройство). В общем случае прибор работает следующий образом:
- Тепловой насос вступает в контакт с окружающими условиями. Обычно аппарат извлекает тепло из земли, воздуха или воды (в зависимости от типа устройства).
- Внутри прибора установлен специальный испаритель, который заполнен хладагентом.
- При контакте с внешней средой хладагент закипает и испаряется.
- После этого хладагент в виде пара поступает в компрессор.
- Там он сжимается — благодаря этому серьёзно повышается его температура.
- После этого разогретый газ поступает в систему отопления, что приводит к нагреванию основного теплоносителя, который и используется для отопления помещений.
- Хладагент понемногу охлаждается. В конце он превращается обратно в жидкость.
- Потом жидкий хладагент поступает в специальный клапан, который серьёзно понижает его температуру.
- В конце хладагент вновь попадает в испаритель, после чего цикл нагрева повторяется.
Фото 1. Принцип работы теплового насоса типа грунт-вода. Синим цветом показан холодный теплоноситель, красным — горячий.
- Экологичность. Такие устройства относятся к возобновляемым источникам энергии, которые не загрязняют атмосферу своими выбросами (тогда как в случае использования природного газа образуются вредные парниковые испарения, а для производства электроэнергии часто применяется сжигание угля, из-за чего также загрязняется воздух).
- Хорошая альтернатива газу. Тепловой насос идеально подойдёт для отопления помещений в случаях, когда использование газа затруднительно по тем или иным причинам (например, когда дом находится вдали ото всех основных инженерных сетей). Насос также выгодно отличается от газового отопления тем, что для установки такого прибора не требуется получать государственное разрешение (но при бурении глубокой скважины его все же придётся получить).
- Недорогой дополнительный источник тепла. Насос идеально подойдёт в качестве дешёвого вспомогательного источника питания (оптимальный вариант — применение газа зимой и насоса — весной и осенью).
- Тепловые ограничения в случае использования водяных насосов. Все тепловые аппараты хорошо функционируют при положительных температурах, тогда как в случае работы при отрицательных температурах многие насосы перестают работать. В основном это связано с тем, что при этом вода замерзает, что делает невозможным её применение как источника тепла.
- Могут появиться проблемы с устройствами, которые в качестве тепла используют воду. Если для нагрева применяется вода, то потребуется найти её стабильный источник. Чаще всего для этого следует пробурить скважину, благодаря чему расходы на монтаж устройства могут возрасти.
Внимание! Насосы обычно стоят в 5—10 раз дороже газового котла, следовательно использование таких приборов в целях экономии в ряде случаев может быть нецелесообразно (чтобы насос окупился, потребуется подождать несколько лет)
Монтаж своими руками
Если владелец дома хорошо разбирается в принципе работы и
схеме оборудования, можно собрать насос самостоятельно. Предварительно
требуется провести расчеты, для этого воспользуйтесь готовым ПО для оптимизации охладительных систем.
Меньше всего сложностей предполагает произведенный своими руками монтаж системы отопления дома «воздух – вода». Она будет состоять из двух каналов (для
подачи воздушного потока и для отвода отработанного), вентилятора и
компрессора. Компрессор не обязательно приобретать новый, допускается
воспользоваться рабочим устройством с холодильника или другого оборудования.
Рекомендуется использовать спиральный компрессор.
- Сделать из медной трубы змеевик. Трубу, по
которой будет поступать холодильный агент, разместить сверху. - Вмонтировать змеевик в разделенную напополам
пластиковую емкость. Она будет выполнять роль испарителя. - Подключить терморегулирующий клапан и
заизолировать его. - Собрать все элементы в блок и проверить его
работоспособность.
Важно отметить, что данная процедура является достаточно
сложной для обычного человека. Непрофессионал не сможет правильно собрать все
детали и подключить терморегулирующий клапан
Лучше доверить выполнение работ мастерам,
т.к. ошибки в процедуре станут причиной неправильного функционирования
оборудования либо неэффективного потребления электричества.
Таким образом, тепловой насос – эффективный способ отопления частного дома. На сегодняшний день в России и странах СНГ использование данного оборудования не сильно распространено, однако в Европе и США такие установки активно применяются для отопления.
Выбирать подходящий тепловой насос рекомендуется на основании не только стоимости монтажных работ и эксплуатации, но и региона использования, условий строительства, площади участка и других факторов.
Энергоносители за или против?
Однако это еще не все. Ценовой подъем на энергоносители и высокие затраты на их доставку приводят к стремительному увеличению стоимости на тепловую и электрическую энергию. А это заставляет потребителей искать новые пути экономии. Еще из школьных учебников мы помним, что передача тепла перетекает от разогретых тел к более прохладным, но никак не обратно. Наш многовековой опыт не помнит обратной процедуры, да и наука доказательно это подтверждает. Однако хитрые современные инженерные приемы делают допустимым переход тепла в обратном направлении – от менее разогретого тела к наиболее горячему.
Схема передачи тепла в тепловом насосе
Для нас нет ничего удивительного, например, в работе холодильника. Где тепло из морозильной камеры, температура в которой чаще отрицательная, выбрасывается в окружающую среду. Если применить это тепло для обогрева зданий, а холодильную камеру заменить испытанным, постоянно функционирующим природным источником тепла, то это и будет так называемый тепловой насос.
Простой тепловой насос (воздух-воздух) которым можно обогреть жилое помещение — это привычный всем кондиционер, с функцией обогрева. Можно с успехом использовать и его, ведь сегодня есть кондиционеры которые могут работать и при значительных минусовых температурах — до -15 гр. и ниже. Однако, если мы хотим получить наибольшую эффективность и комфорт, при обогреве целого дома таким экономичным методом (а тепловой насос экономичнее обычных теновых обогревателей в три, и даже более раз), то нужно использовать более продвинутые системы.
На заметку: многие задаются вопросом — как же так, ведь есть закон сохранения энергии. Почему такое несоразмерное соотношение отдачи тепла, с потреблением электроэнергии? Весь секрет в том, что в тепловом насосе электроэнергия тратится только на электромагнитную обмотку компрессора (которая конечно нагревается, но не это тепло идет на обогрев помещения), а тепловая энергия вырабатывается, «сосется», из внешней среды, благодаря особым процессам теплового насоса (само слово насос, указывает на это). Чтобы в этом разобраться, нужно знать больше школьного курса физики. Но попробуем пройтись по азам ниже.
Устройство и принцип работы
Некоторым количеством тепловой энергии обладает практически любая среда, которая нас окружает, если только ее температура превышает 1°C. Почему бы не использовать часть этой энергии для обогрева собственного дома? Делается это с помощью теплового насоса.
Основан принцип работы теплового насоса на передаче тепла от источника с низким потенциалом тепловой энергии к теплоносителю, который имеет более высокую температуру. На практике выглядит это таким образом:
- Теплоноситель поступает в трубопровод, расположенный, например, в грунте, и нагревается на несколько градусов.
- Затем теплоноситель попадает в теплообменник (или испаритель) и передаёт собранную тепловую энергию на внутренний контур.
- Хладагент (вещество с низкой температурой кипения, находящееся под низким давлением), который находится во внешнем контуре, нагревается в испарителе и превращается в газ.
- Затем газообразный хладагент попадает в компрессор, где сжимается под воздействием высокого давления. При этом температура хладагента становится ещё выше.
- Горячий газ поступает в конденсатор, где передаёт тепловую энергию теплоносителю внутренней системы отопления дома.
- После этого хладагент, потерявший тепло, возвращается в систему в жидком состоянии.
Работа холодильных установок основана на таком же принципе, поэтому некоторые виды тепловых насосов в летнее время можно вполне успешно использовать в качестве кондиционеров, т. е. для охлаждения помещения.
Тепловой насос позволяет обогревать дом, используя низкопотенциальную тепловую энергию окружающей среды
Безопасность и экологичность
Тепловой насос — хорошее устройство, которое идеально подойдёт для обогрева здания в качестве вспомогательного источника тепла.
В качестве топлива в таком случае используются ресурсы окружающей среды, поэтому тепловой насос считается возобновляемым источником энергии.
Главные преимущества — безопасность и экологичность, поскольку для эксплуатации не используется сжигание газа или угля.
Такой прибор не навредит человеку и окружающей среде, но использовать его следует с умом, поскольку в ряде случаев применение этого прибора может быть нецелесообразно с инженерной или экономической точки зрения.
Воздушные — сплит и моно
Применять воздушные ТН выгоднее в южных регионах, где температура редко опускается ниже 0 °С, но современное оборудование способно работать и при —25 °С. Чаще всего устанавливают сплит-системы, состоящие из внутридомового и наружного блоков. Внешний комплект состоит из вентилятора, обдувающего радиаторную решетку, внутренний — из конденсаторного теплообменника и компрессора.
Конструкцией сплит-систем предусматривается реверсивное переключение режимов работы с помощью клапана. Зимой внешний блок является генератором тепла, а летом наоборот — отдает его наружному воздуху, работая как кондиционер. Воздушные ТН отличаются предельно простым монтажом внешнего блока.
- Высокая эффективность работы наружного блока обеспечивается большой площадью теплообмена радиаторной решетки испарителя.
- Бесперебойная работа возможна при температуре наружного воздуха до —25 °С.
- Вентилятор размещается за пределами помещения, поэтому уровень шума находится в допустимых пределах.
- Летом сплит-система работает как кондиционер.
- Автоматически поддерживается заданная температура внутри помещения.
Проектируя отопление зданий, расположенных в регионах с продолжительной и морозной зимой, необходимо учитывать низкую эффективность воздушных ТН при отрицательных температурах. На 1 кВт затраченной электроэнергии приходится 1,5–2 кВт тепла. Поэтому надо предусматривать дополнительные источники теплоснабжения.
Самый простой монтаж ТН возможен в случае применения моноблочных систем. Внутрь помещения заходят только трубки с теплоносителем, а все остальные механизмы находятся снаружи в одном корпусе. Такая конструкция существенно повышает надежность работы оборудования, а также снижает шум до величины менее 35 дБ — это на уровне обычного разговора двух человек.
Преимущества и недостатки системы
Установка теплового насоса дома и включение его в систему отопления или создание полноценной отопительной станции решит ряд насущных проблем и имеет следующие преимущества:
- это автономная система отопления, единственным централизованным элементом которой является подключение к электросети;
- этот способ позволяет значительно сэкономить на дорогостоящих энергетических носителях, которые традиционно применяются для отопления и существенно снизить затраты на коммунальные услуги. Средний Коэффициент преобразования теплоты равен 3,5 – 4,5. Из 1 кВт электроэнергии насос вырабатывает от 3 до 7 кВт тепла. Это самые высокие показатели среди всех видов котлов, работающих на любом топливе;
- система безопасна для здоровья человека и для экологии. Она помогает сберечь невозобновляемые энергоресурсы планеты;
- пожарная безопасность и невоспламеняемость деталей. Этот котёл не перегревается, не взрывается, не горит, не выделяет угарный газ;
- один насос может вырабатывать как тепло, так и холод, обеспечивая нужный микроклимат в доме, а также нагревать воду для бытовых нужд;
- долговечность – по опыту европейских жителей срок службы оборудования составляет 20-50 лет;
- комфорт и бесшумная работа. Управление системой осуществляется с помощью автоматики;
- установка насоса не требует согласований, которые нужны при монтаже, например, газового оборудования.
Преимуществ у такой системы гораздо больше, чем недостатков
К недостаткам можно отнести:
- относительно высокую стоимость установки и самого насоса, окупаемость такой системы напрямую зависит от интенсивности её эксплуатации;
- необходимость привлечения специалистов и применения специальной бурильной и иной техники для обустройства геотермального насоса с вертикальным контуром, глубина которого может достигать 200 м.
Разновидности тепловых насосов
Тепловые насосы подразделяются на пять видов:
- Грунт – вода;
- Вода – вода;
- Воздух – вода;
- Вода – воздух;
- Воздух – воздух.
Рассмотрим их более подробно.
Грунт – вода
Забор тепловой энергии из грунта – идея отличная, тем более что на глубине от 3-х до 200 метров ее более чем много. Здесь прокладываются специальные трубы, по которым циркулирует вода, либо закладывается вертикальный зонд. Полученное тепло забирается из толщи грунта, после чего попадает в тепловой насос, откуда отправляется к потребителям. Учитывая относительную стабильность температуры на глубине, оборудование порадует большим количеством тепла, передающегося в отопление и на подготовку горячей воды.
Вода – вода
Тепловой насос «вода – вода» представляет собой систему забора тепла из водоемов или подземных скважин. Если забор ведется из скважин, то там температура всегда стабильная, что связывается с отсутствием глубокого промерзания грунта
Что касается забора из озер и рек, то тут необходимо принимать во внимание температуру незамерзающего слоя – от нее зависит эффективность работы теплового насоса. Полученная энергия отправляется в батареи, теплые полы или в контур ГВС
Воздух – вода
Забор тепловой энергии насосом из окружающего воздуха нельзя назвать самым оптимальным вариантом обогрева жилья. Все дело в том, что температура воздушных масс не отличается особой стабильностью – здесь наблюдаются суточные и сезонные колебания. В наиболее холодное время года их эффективность может равняться полному нулю, поэтому совместно с насосами нужно будет использовать какое-то дополнительное отопительное оборудование.
Вода – воздух
Тепловые насосы данной конструкции похожи на современные сплит-системы, которые могут работать не только на охлаждение воздушных масс, но и на их нагрев. Они применяются там, где необходимо установить систему воздушного отопления. Забор тепла здесь ведется из воды – скважин, рек или озер. Оборудование отличается высокой эффективностью, но требует положительной температуры воды.
Воздух – воздух
Фактически перед нами кондиционер «наоборот». Он забирает тепло снаружи и отправляет его в помещения. Кстати, так умеет работать любая сплит-система, в которой предусмотрен реверс хладагента с помощью четырехходового клапана. Представленные тепловые насосы отличаются эффективностью только при положительной температуре, в отрицательном сегменте их энергоэффективность быстро падает почти до нуля.
Наибольшей популярностью пользуются тепловые насосы, забирающие тепло из толщи грунта или из воды – они отличаются эффективной и стабильной работой.
Принцип работы
Открытый в начале XIX века французским ученым Карно термодинамический принцип переноса тепла потом был детализирован лордом Кельвином. Но практическая польза их трудов, посвященных решению проблемы отопления жилья от альтернативных источников, появилась только в последние пятьдесят лет.
В начале семидесятых годов прошлого столетия произошел первый энергетический кризис мирового масштаба. Поиски экономичных способов отопления привели к созданию устройств, способных собирать из окружающий среды энергию, концентрировать ее и направлять на обогрев дома.
В результате была разработана конструкция ТН со взаимодействующими между собой несколькими термодинамическими процессами:
- Когда хладагент компрессорного контура попадает в испаритель, давление и температура фреона почти мгновенно снижаются. Полученный в результате температурный перепад способствует отбору тепловой энергии от теплоносителя внешнего коллектора. Эта фаза называется изотермическим расширением.
- Затем происходит адиабатическое сжатие — компрессор увеличивает давление хладагента. При этом его температура возрастает до +70 °С.
- Проходя конденсатор, фреон становится жидкостью, так как при повышенном давлении отдает тепло контуру внутридомового отопления. Эта фаза называется изотермическим сжатием.
- Когда хладон проходит дроссель, давление и температура резко падают. Происходит адиабатическое расширение.
Нагревание внутреннего объема помещения по принципу ТН возможно только с использованием высокотехнологичного оборудования, снабженного автоматикой для управления всеми вышеперечисленными процессами. Кроме того, программируемые контроллеры регулируют интенсивность генерации тепла соответственно колебаниям температуры наружного воздуха.
Принцип работы теплового насоса
Весь процесс работы системы представлен в виде цикла Карно – названного по имени изобретателя. Описать его можно следующим образом. Теплоноситель проходит через рабочий контур – воздушный, земляной, водный, их сочетания, откуда направляется в 1-й теплообменник – испарительную камеру. Здесь он передает накопленное тепло хладагенту, циркулирующему во внутреннем контуре насоса.
Принцип работы теплового насоса отопления дома
Жидкий хладагент поступает в испарительную камеру, где низкие значения давления и температуры (5С) переводят его в газообразное состояние. Следующий этап – переход газа в компрессор и его сжатие. В результате чего температура газа резко возрастает, газ переходит в конденсатор, здесь он обменивается теплом с системой отопления. Охлажденный газ переходит в жидкость, и цикл повторяется.